Effective Intrusion Type Identification with Edit Distance for HMM-Based Anomaly Detection System
نویسندگان
چکیده
As computer security becomes important, various system security mechanisms have been developed. Especially anomaly detection using hidden Markov model has been actively exploited. However, it can only detect abnormal behaviors under predefined threshold, and it cannot identify the type of intrusions. This paper aims to identify the type of intrusions by analyzing the state sequences using Viterbi algorithm and calculating the distance between the standard state sequence of each intrusion type and the current state sequence. Because the state sequences are not always extracted consistently due to environmental factors, edit distance is utilized to measure the distance effectively. Experimental results with buffer overflow attacks show that it identifies the type of intrusions well with inconsistent state sequences.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملIdentifying Intrusions in Computer Networks Based on Principal Component Analysis
Most current anomaly Intrusion Detection Systems (IDSs) detect computer network behavior as normal or abnormal but cannot identify the type of attacks. Moreover, most current intrusion detection methods cannot process large amounts of audit data for real-time operation. In this paper, we propose a novel method for intrusion identification in computer networks based on Principal Component Analys...
متن کاملSecuring Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining
Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...
متن کاملHidden semi-Markov model for anomaly detection
In this paper, hidden semi-Markov model (HSMM) is introduced into intrusion detection. Hidden Markov model (HMM) has been applied in intrusion detection systems several years, but it has a major weakness: the inherent duration probability density of a state in HMM is exponential, which may be inappropriate for the modeling of audit data of computer systems. We can handle this problem well by de...
متن کامل